Nikolskii-type Inequalities for Shift Invariant Function Spaces

نویسندگان

  • Peter Borwein
  • Tamás Erdélyi
چکیده

Let Vn be a vectorspace of complex-valued functions defined on R of dimension n + 1 over C. We say that Vn is shift invariant (on R) if f ∈ Vn implies that fa ∈ Vn for every a ∈ R, where fa(x) := f(x− a) on R. In this note we prove the following. Theorem. Let Vn ⊂ C[a, b] be a shift invariant vectorspace of complex-valued functions defined on R of dimension n+ 1 over C. Let p ∈ (0, 2]. Then ‖f‖L∞[a+δ,b−δ] ≤ 2 2/p ( n+ 1 δ )1/p ‖f‖Lp[a,b] for every f ∈ Vn and δ ∈ ( 0, 1 2 (b− a) )

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups

We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...

متن کامل

SOLUTION-SET INVARIANT MATRICES AND VECTORS IN FUZZY RELATION INEQUALITIES BASED ON MAX-AGGREGATION FUNCTION COMPOSITION

Fuzzy relation inequalities based on max-F composition are discussed, where F is a binary aggregation on [0,1]. For a fixed fuzzy relation inequalities system $ A circ^{F}textbf{x}leqtextbf{b}$, we characterize all matrices $ A^{'} $ For which the solution set of the system $ A^{' } circ^{F}textbf{x}leqtextbf{b}$ is the same as the original solution set. Similarly, for a fixed matrix $ A $, the...

متن کامل

Asymptotic Behavior of Nikolskii Constants for Polynomials on the Unit Circle

Let q > p > 0, and consider the Nikolskii constants Λn,p,q = inf deg(P )≤n−1 ‖P‖p ‖P‖q , where the norm is with respect to normalized Lebesgue measure on the unit circle. We prove that lim sup n→∞ n 1 p − 1 q Λp,q ≤ Ep,q , where Ep,q = inf ‖f‖Lp(R) ‖f‖Lq(R) , and the inf is taken over all entire functions f of exponential type at most π. We conjecture that the lim sup can be replaced by a limit...

متن کامل

General Minkowski type and related inequalities for seminormed fuzzy integrals

Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.

متن کامل

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

‎Some functional inequalities‎ ‎in variable exponent Lebesgue spaces are presented‎. ‎The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non‎- ‎increasing function which is‎‎$$‎‎int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleq‎‎Cint_0^infty f(x)^{p(x)}u(x)dx‎,‎$$‎ ‎is studied‎. ‎We show that the exponent $p(.)$ for which these modular ine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013